Chép từ mathvn.com
-----------------------------------------------------------------------------------------------
Posted: 29 Nov 2010 07:33 PM PST Khoa học đang đứng trước hàng loạt câu hỏi thách thức: -Liệu có thể có một “Lý thuyết về mọi thứ” của vật lý không? Và rất nhiều câu hỏi khác nữa. Mỗi câu hỏi là một thách đố lớn chưa từng có – một “Chiếc Chén Thánh” (The Holy Grail)[1] của khoa học, mà câu trả lời thường dẫn tới sự chia rẽ quan điểm, một bên nói “có”, một bên “không”. Chưa bao giờ khoa học bị rơi vào tình trạng ngã ba đường như hiện nay. Dường như dự cảm được điều đó nên từ lâu Kurt Gödel đã lưu ý: “Ý nghĩa của cuộc sống là ở chỗ biết phân biệt Ước Muốn với Hiện Thực”[2]. Những ai biết rõ lịch sử toán học thế kỷ 20 đều hiểu ngay rằng Gödel ngụ ý nhắc nhở nhân loại không được phép quên bài học thất bại cay đắng của Chương trình Hilbert – một chương trình có tham vọng khám phá ra “Lý thuyết về mọi thứ” của toán học, tức là không hiểu nguyên lý giới hạn của nhận thức mà truyện ngụ ngôn “Thầy Bói Xem Voi” đã nói từ xa xưa. Thậm chí đến khi Gödel công bố Định lý bất toàn (Theorem of Incompleteness), khẳng định nguyên lý giới hạn của nhận thức dưới dạng toán học, vẫn có nhiều người không muốn thừa nhận nguyên lý này. Đó là lý do để nhiều nhà triết học khoa học Tây phương hiện nay thích nhắc lại tích “Thầy Bói Xem Voi”, như một gợi ý để từ đó đề cập tới Định lý bất toàn nói riêng và vấn đề giới hạn của nhận thức nói chung. 1] “Thầy Bói Xem Voi”: “Thầy Bói Xem Voi” là một truyện ngụ ngôn bằng thơ nhan đề “The Blind Men and the Elephant” (Những anh mù và con Voi), hoặc “Six Men of Indostan” (Sáu anh chàng ở xứ Indostan[4]), của John Godfrey Saxe, một nhà thơ triết lý nổi tiếng người Mỹ thế kỷ 19. Nhưng thực ra tích “Thầy Bói Xem Voi” “đã được ghi chép từ xa xưa trong Kinh Đại Bát Niết Bàn 大般涅槃经 do ngài Đàm Vô Sấm 昙无谶 (Dharmaraksa), pháp sư người Ấn, dịch ra Hoa ngữ , đồng thời cũng đã được ghi chép trong Kinh Trường A Hàm của Phật Giáo”[5].
Ý tưởng của John Saxe thật dễ hiểu: Nhận thức của con người vốn phiến diện và bị giới hạn – nhận thức dù tiến bộ đến mấy cũng chỉ đúng một phần chứ không bao giờ đầy đủ và hoàn thiện. Nhưng phỏng có ích gì khi nhắc lại triết lý giới hạn của nhận thức trong thời buổi khoa học đang tăng trưởng với tốc độ hàm mũ như hiện nay? Phải chăng đó là một nghịch lý? Sau đây sẽ là câu trả lời. 2] Nghịch lý lớn về nhận thức: Điều bất ngờ thú vị cần thông báo ngay với độc giả là tích “Thầy Bói Xem Voi” – một chuyện tưởng như đã “biết rồi, khổ lắm, nói mãi” – lại đã và đang tái xuất hiện trên các diễn đàn khoa học tây phương hiện đại với một tầm vóc và bình diện mới! Thật vậy, dưới ánh sáng của những sự kiện khoa học trọng đại nhất trong thế kỷ 20, đặc biệt nhờ những tiến bộ vượt bậc của khoa học computer trong mấy thập kỷ qua, nhân loại đã và đang tái khám phá ra nguyên lý về bản chất giới hạn của nhận thức – một nguyên lý tự nhiên mà tích “Thầy Bói Xem Voi” đã nói từ lâu nhưng dần dần bị lãng quên! Nguyên lý này khẳng định rằng NHẬN THỨC, mặc dù mỗi ngày một tiến hoá, nhưng không bao giờ đạt tới chỗ BIẾT HẾT, BIẾT MỌI THỨ, BIẾT ĐẦY ĐỦ, BIẾT TẬN CÙNG … Tham vọng biết mọi thứ, xét cho cùng, là … “ngây thơ” – không hiểu hoặc không muốn hiểu một quy luật của nhận thức mà John Saxe đã trình bầy từ lâu dưới dạng thơ ngụ ngôn! Sự “ngây thơ” đó đáng được thông cảm: Khi khát vọng nhận thức bùng cháy mãnh liệt, con người có xu hướng muốn biết hết, biết tới tận cùng! Đó là một khát vọng chính đáng, tự nhiên theo bản năng, và nhờ đó con người mới khám phá hết bí mật này đến bí mật khác. Đó chính là động lực của tiến hoá. Nếu khát vọng đó đôi khi (hoặc nhiều khi) trở nên thái quá, chẳng qua con người sinh ra vốn bản chất đã hướng ngoại, thích quan sát các đối tượng khách thể bên ngoài hơn là quan sát chính chủ thể nhận thức. Trẻ em thể hiện rất rõ điều này. Một em bé 6 tháng sẽ tuyệt đối không có “ý thức về bản ngã”, nhưng đã có thể có những nhận thức nhất định về thế giới xung quanh. Ý thức hướng nội chỉ tới khi con người trưởng thành hơn. Quá trình trưởng thành về nhận thức của một đời người chính là tấm gương phản chiếu quá trình trưởng thành về nhận thức của toàn thể loài người. Đó chính là lý do để khoa học về nhận thức ra đời quá muộn màng: Trong khi các khoa học khác đã có tới hàng ngàn hoặc hàng trăm năm tuổi, khoa học về nhận thức dường như mới ra đời gần đây. Nói cách khác: Trong khi nền văn minh của nhân loại đã trưởng thành và già dặn qua hàng ngàn năm lịch sử, con người dường như vẫn còn quá ngây thơ trong việc tự hiểu biết mình. Nhưng hơn bất kỳ một giai đoạn lịch sử nào khác, thế kỷ 20 đã làm cho con người bừng tỉnh: Song song với nhận thức hướng ngoại, con người đã đặc biệt quan tâm tới chính chủ thể nhận thức – nghiên cứu bản chất của nhận thức như nghiên cứu bất kỳ một đối tượng khách quan nào khác! Nhưng tại sao lại là thế kỷ 20, thay vì thế kỷ 19 hay 21? Đơn giản vì nhận thức đã phải trả giá rất đắt để hiểu được 3 bài học tưởng như không sao hiểu được trong thế kỷ 20: Thuyết Tương Đối của Einstein + Nguyên Lý Bất Định của Heisenberg + Bài học về cuộc khủng hoảng trầm trọng trong nền tảng Toán Học đầu thế kỷ 20. Thuyết Tương Đối phải mất vài năm rồi nhân loại mới hiểu. Nguyên Lý Bất Định cũng phải mất vài chục năm: Ra đời từ 1921 nhưng chưa bao giờ được nhà vật lý lớn nhất thế kỷ 20 là Einstein công nhận, ngay cả trước khi ông mất năm 1955. Nhưng sự trả giá cho bài học thứ ba còn đắt hơn rất nhiều: Phải mất gần một thế kỷ, tức là đến cuối thế kỷ 20, nhân loại mới bắt đầu hiểu được lý do thực sự của cuộc khủng hoảng Toán Học đầu thế kỷ này. Hơn bất kỳ một bài học nào khác, bài học thứ ba này để lộ giới hạn của nhận thức. Nếu chọn ngẫu nhiên 100 nhà khoa học và giáo dục để phỏng vấn, có lẽ 100% biết rõ bài học thứ nhất (Thuyết Tương Đối), 75% (hoặc 50%?) biết rõ bài học thứ hai (Nguyên Lý Bất Định), nhưng sẽ có bao nhiêu % biết rõ bài học thứ ba (cuộc khủng hoảng về nhận thức bản chất Toán Học)? Tôi ngờ rằng tỷ lệ này rất thấp, vì thông qua phương pháp giảng dạy môn Toán ở trường phổ thông hiện nay, tôi thấy người ta đã hiểu sai bản chất và ý nghĩa của Toán Học, từ đó suy ra rằng người ta không học được bài học nào từ cuộc khủng hoảng nói trên. Bằng chứng? Vâng, sẽ có bằng chứng, nhưng xin để dành cho bài viết kỳ sau. Bây giờ là lúc cần quay lại tích “Thầy Bói Xem Voi”, vì chính sự trả giá về nhận thức trong thế kỷ 20 đã làm cho nhân loại bừng tỉnh để “ngộ” ra triết lý sâu xa của truyện ngụ ngôn này: Nhận thức, bản thân nó chứa đựng một NGHỊCH LÝ LỚN – Khát vọng vô hạn về nhận thức mâu thuẫn với bản chất giới hạn của nhận thức! “Làm thế nào để một bộ phận có thể nhận thức được cái toàn thể?” (How can a part know the whole?), đó chính là nỗi băn khoăn từ thế kỷ 17 của Blaise Pascal – một trong những nhà khoa học và triết học sâu sắc nhất của mọi thời đại.Một người như Pascal có lẽ có thừa óc tưởng tượng và suy luận để hình dung ra cái tổng thể mà ông khao khát muốn biểt, nhưng dường như cái đầu triết học quá sâu sắc của ông lại khuyên ông nên thận trọng. Phải chăng vì thế mà ông băn khoăn? Trong thời đại của chúng ta, nỗi băn khoăn của Pascal vẫn mang tính thời sự. Thật vậy, dù khoa học tiến bộ đến mấy, kính viễn vọng có thể nhìn xa đến mấy, kính hiển vi điện tử có thể nhìn sâu đến mấy, cũng chẳng bao giờ nhìn thấy cái tổng thể. Khoa học chỉ suy đoán ra cái tổng thể dựa trên những quan sát bộ phận, rồi lại dùng những quan sát bộ phận để tái kiểm chứng cái mô hình tổng thể đã suy đoán. Dù cho suy đoán dựa trên những phương pháp toán học chính xác bậc nhất, nó vẫn chỉ là kết quả của suy đoán, và do đó nó luôn luôn bị thử thách nghiệt ngã bởi thực tiễn. Thực tiễn luôn luôn là ông thầy chỉ ra lỗi trong các mô hình của con người, buộc con người phải sửa chữa mô hình của mình để phù hợp với hiện thực hơn. Nhưng dù sửa chữa phù hợp đến mấy đi chăng nữa thì cũng chỉ là phù hợp với hiện thực cục bộ có thể quan sát được, thay vì chính cái hiện thực tổng thể tồn tại khách quan, độc lập với mọi suy luận và quan sát của con người. Chẳng hạn có một thời, Mô Hình Vũ Trụ dựa trên Cơ Học Newton đã thống trị “tuyệt đối” trong tâm thức các nhà khoa học, đến nỗi Joseph Louis Lagrange, nhà toán học lỗi lạc người Pháp trong thế kỷ 18, đã phải thốt lên lời buồn phiền rằng “Newton đã tìm ra hết mọi bí mật rồi, chẳng còn gì lớn cho chúng ta làm nữa”. Nhưng may thay, Albert Einstein đã chứng minh rằng Lagrange sai! Một số học giả tây phương hiện đại cho rằng nhận thức là một hàm tăng theo thời gian, nhưng không tăng tới vô cùng, mà bị chặn trên bởi một tiệm cận ngang – một cái ngưỡng (threshold): Hàm nhận thức ngày càng tiệm cận tới cái ngưỡng đó nhưng không bao giờ chạm tới và vượt qua! Thậm chí một số còn cho rằng khoa học ngày nay đã tiến gần đến cái ngưỡng đó. Thời gian sẽ trả lời nhận định này đúng hay sai. Tuy nhiên, sự tồn tại của một cái ngưỡng là có thật, ít nhất điều này đã được chứng minh trong Toán Học và trong Khoa Học Computer: Đó là “Định Lý Bất Toàn” (Theorem of Incompleteness) của Kurt Godel và “Sự Cố Dừng” (The Halting Problem) của Alan Turing. Cái ngưỡng đó làm cho một số người nản lòng, thậm chí cảm thấy khó chịu, vì không thể chấp nhận một cái ngưỡng ngáng trở nhận thức. Xin nói ngay rằng những người đó đã hiểu lầm: Chính cái ngưỡng đó làm cho cuộc sống của chúng ta có ý nghĩa hơn, hạnh phúc hơn, và khoa học sẽ đâm chồi nẩy lộc nhiều hơn, đơm hoa kết trái nhiều hơn! Thật vậy, vì nhận thức có giới hạn, nó không bao giờ đạt tới đích cuối cùng, vì thế khát vọng khám phá sẽ được nuôi dưỡng mãi mãi, niềm vui khám phá sẽ không bao giờ cạn, trí tưởng tượng của con người sẽ tha hồ bay bổng, … điều này làm nên một trong những ý nghĩa căn bản của cuộc sống. Immanuel Kant vĩ đại từng nói: “Mỗi câu trả lời lại đặt ra một câu hỏi mới”. Bạn nghĩ sao nếu chúng ta tìm ra một câu trả lời cho mọi thứ để rồi không còn gì đáng hỏi nữa? Cuộc sống khi đó sẽ ra sao? Nhưng chính vì không bao giờ có một câu trả lời cuối cùng nên con người tha hồ tưởng tượng để tìm câu trả lời cho những gì mình chưa biết. Nhà toán học kiêm triết học nổi tiếng Bertrand Russell đã an ủi những người lo xa: “Khoa học có thể tạo ra giới hạn đối với sự hiểu biết, nhưng không tạo ra giới hạn đối với trí tưởng tượng”[6]. Nói cách khác, Bà Mẹ Tự Nhiên (The Mother Nature) không bao giờ mở cánh cửa bí mật cuối cùng cho chúng ta, mà luôn để dành những bí mật tiếp theo cho chúng ta khám phá, nhằm nuôi dưỡng chúng ta không chỉ phần xác, mà cả phần hồn! Bí mật của Tự Nhiên giống như “Chiếc Hộp Trung Hoa” (Chinese Box) hoặc những con búp-bê Matryoshka của Nga – mỗi lần mở ra lại thấy một chiếc hộp bên trong (một con búp-bê bên trong). Mỗi chúng ta đều giống như một đứa trẻ tò mò, trông thấy chiếc hộp bên trong lại muốn mở ra xem, và lại thấy một chiếc hộp bên trong nữa. Albert Einstein chính là một đứa trẻ điển hình như thế, ông nói: “Cái đẹp nhất mà chúng ta có thể chiêm nghiệm chính là sự BÍ ẨN. Đó là ngọn nguồn của nghệ thuật và khoa học chân chính”[7]. Vậy thay vì chống đối nguyên lý giới hạn của nhận thức, chúng ta nên cảm ơn nó, vì nhờ nó chúng ta luôn sống với những khát vọng lãng mạn! Nhưng cần phải tỉnh táo, vì nếu tham vọng nhận thức trở thành vô chừng vô độ, bất chấp giới hạn thì đó lại là một vấn đề hoàn toàn khác! 3] Khi tham vọng trở nên vô chừng vô độ: Khi đó, nhận thức có nguy cơ rơi vào không tưởng, lầm đường lạc lối, thay vì tiến lên, nhận thức trở thành một cái vòng luẩn quẩn, hoặc thậm chí thụt lùi. Lịch sử đã từng chứng kiến phản ứng của những người nhìn xa trông rộng trước những kiểu tham vọng vô chừng vô độ như thế. Một trong những trường hợp đáng để cho chúng ta phải suy ngẫm nghiêm túc lại là Albert Einstein. Bạn nghĩ sao khi một người như Einstein – một người có khát vọng hiểu biết cháy bỏng hơn ai hết, một đứa trẻ từng say đắm Hình Học Euclid như một kỳ quan, một nhà vật lý cần toán học như chúng ta cần không khí và nước – đã có lúc phải thốt lên: “Tôi không tin vào Toán Học”[8]! Thoạt nghe, có vẻ như đó là một chuyện bịa đặt, nhưng than ôi, đó lại là một sự thật! Xin bạn hãy bình tâm tìm hiểu sự thật này, và tôi tin rằng bạn sẽ hết ngạc nhiên nếu biết rõ rằng ấy là lúc Einstein phản ứng với những thứ toán học sáo rỗng, hình thức chủ nghĩa, toán học siêu hình (meta-mathematics), toán học tách rời thực tiễn, toán học thuần tuý suy diễn logic mà không đếm xỉa đến ý nghĩa thực tế. Bạn sẽ dễ dàng thông cảm với Einstein nếu biết rõ rằng thứ toán học siêu hình đó đã ra đời từ một tham vọng vô chừng vô độ và không tưởng của một số nhà toán học cùng thời với ông. Những người này tin rằng tồn tại những chân lý logic hình thức tuyệt đối, độc lập với thế giới hiện thực xung quanh, và tin rằng với những phương pháp nghiên cứu đúng đắn, trước sau họ cũng sẽ tìm ra những chân lý tuyệt đối đó. Nhưng Einstein, với trực giác siêu việt, ngay từ đầu đã không tin họ, không tin vào tham vọng ngông cuồng của họ, không tin vào hệ thống toán học thuần lý bất chấp thực tiễn của họ, và lịch sử đã đứng về phía Einstein! Chẳng riêng Einstein, một vĩ nhân khác mà tài năng chẳng kém gì Einstein là Henri Poincaré, người được coi là Mozart của Toán Học, cũng chống đối quyết liệt thứ toán học sính hình thức đó. Nhưng than ôi! Sức ỳ của bộ não cũng “vĩ đại” chẳng kém gì sức sáng tạo của nó: Bất chấp những người như Einstein và Poincaré, tư tưởng sính hình thức trong giới toán học, và đặc biệt trong giới giảng dạy toán học, vẫn cứ tiếp tục sống dai dẳng cho đến tận hôm nay. Nếu đọc giả để ý quan sát, sẽ chẳng mấy khó khăn để nhận thấy bóng dáng những loại toán học này trong hệ thống giáo dục hiện nay. Đó là hậu quả tàn dư của thứ toán học hình thức mà Einstein và Poincaré chán ghét. Đó là lý do để nhiều học giả trên thế giới ngày nay phải lên tiếng cảnh báo: Hãy tỉnh táo để nhận thức nguyên lý giới hạn của nhận thức! Trong bối cảnh đó, tích “Thầy Bói Xem Voi” tất yếu mang ý nghĩa thời sự và được làm sống lại một cách sinh động dưới nhiều hình thức, điển hình là những “mô hình bất khả” (Impossible Models), hay những “cấu trúc phi lý” (Inconsistent Structures). 4] Mô Hình Bất Khả: Điển hình của những mô hình này là Tam Giác Penrose hoặc Bậc Thang Penrose của Sir Roger Penrose, một trong những nhà vật-lý-toán-học lớn nhất ngày nay. Ông có những đóng góp vô cùng đa dạng trong vật lý và toán học, đoạt rất nhiều giải thưởng danh giá bậc nhất về vật lý và toán. Cùng với Stephen Hawking, ông được coi là một trong những tác giả của Lý thuyết về hốc đen, như Wikipedia nhận định: “Công trình sâu sắc của ông về tính Tương Đối Tổng Quát đóng vai trò chủ yếu trong nhận thức của chúng ta về các hốc đen”. Nhưng khác với Stephen Hawking, ông không mấy tin tưởng vào khả năng “Hiểu được ý Chúa” của Einstein trước đây và của Hawking hiện nay. Bản thân những “mô hình bất khả” của ông đã nói lên điều đó. Ngắm kỹ hai mô hình trên, dễ nhận thấy chúng chỉ “khả dĩ” (possible) hoặc “hợp lý” (consistent) trong từng cục bộ (local part), nhưng “bất khả” (impossible) hoặc “phi lý” (inconsistent) trên tổng thể (the whole), đúng như triết lý của “Thầy Bói Xem Voi”: Mỗi anh đúng một phần, Nhưng đều sai tất cả! Tuy nhiên sẽ là bất công nếu gán cho các nhà khoa học công lao sáng tạo ra những “mô hình bất khả”. Chính các hoạ sĩ mới là những người đi tiên phong trong lĩnh vực này. Hãy ngắm bức tranh sau đây: Đó là cấu trúc “Cầu thang bất khả” (Impossible Staircase) cuả hoạ sĩ Thụy Điển Oscar Reutersvard (1915-2002) được vẽ từ nửa đầu thế kỷ 20! Với hàng trăm mô hình tương tự, Reutersvard được coi là cha đẻ của ngành “hội hoạ ảo ảnh” (Illusionary Art), và chính hội hoạ đó đã tạo cảm hứng cho Penrose sáng tạo ra những mô hình của mình. Tuy nhiên phải thừa nhận rằng, từ khi những nhà khoa học lớn như Penrose sử dụng các mô hình bất khả để nói lên nguyên lý bất khả trong việc nhận thức CÁI TOÀN BỘ, thì nguyên lý này mới được nhìn nhận một cách thực sự nghiêm túc, không chỉ dưới hình thức văn chương, nghệ thuật, hoặc triết học, mà ngay cả trong lĩnh vực khoa học và công nghệ. Điều này rất có lợi cho cuộc sống, vì nó hướng khoa học vào những công trình thực dụng hơn, thiết thực hơn. Sự chuyển hướng này bộc lộ rất rõ trong những Giải Nobel khoa học từ cuối thế kỷ 20 tới nay (trước đây thường dành cho những đề tài thuần tuý lý thuyết). Tóm lại, đã có một sự bừng tỉnh về nhận thức đối với triết lý “Thầy Bói Xem Voi”. Để cảm nhận được điều đó, bạn chỉ cần ngồi vào computer rồi gõ “impossible models”, hoặc “artistic illusions”, “inconsistent art”, v.v. bạn sẽ có hàng trăm, hàng nghìn mô hình “bất khả” kỳ lạ khác nhau, trong đó rất nhiều mô hình vừa được công bố chỉ vài ngày trước khi bài báo này đến tay bạn. Điều đó nói lên rằng chủ đề này nóng hổi đến chừng nào. Tuy nhiên, nếu bạn thật sự muốn biết các nhà khoa học và giáo dục ngày nay nghĩ gì về triết lý “Thầy Bói Xem Voi”, xin bạn hãy đọc ngay một cuốn “best-seller” của năm 1998: “What is Mathematics, Really?” (Thực ra Toán Học là gì?) cuả Reuben Hersh, một nhà toán học rất nổi tiếng ở Mỹ, trong đó tác giả đã dẫn nguyên văn truyện Sáu anh mù ở xứ Indostan để nói về một “giấc mơ vĩ đại” của các nhà toán học trong thế kỷ 20 – Giấc mơ tìm thấy “Con Voi Toán Học”! 5] Thay lời kết: Câu chuyện về giấc mơ tìm kiếm Con Voi Toán Học là một trong những chương có ý nghĩa nhất và quan trọng nhất trong lịch sử toán học – quan trọng đến nỗi nếu không biết gì về nó thì không những sẽ vô cùng thiệt thòi vì đã bỏ qua một trong những chương hay nhất, hấp dẫn nhất của lịch sử khoa học, mà còn có nguy cơ bị thiếu hụt một bài học vô giá về khoa học nhận thức và khoa học giáo dục. Sự thiếu hụt ấy sẽ dẫn tới hậu quả không hiểu rõ bản chất của toán học, và do đó sẽ áp dụng một phương pháp sai lầm trong giảng dạy toán học. Đó chính là điều Reuben Hersh muốn nói, và cũng là điều mà loạt bài viết về chủ đề “Thầy Bói Xem Voi” muốn nói. Quả thật là đang tồn tại tình trạng hiểu sai bản chất toán học, và đó là lý do căn bản dẫn tới tình trạng “dạy giả” và “học giả” tràn lan: Chưa bao giờ tình trạng học sinh không hiểu Toán, đối phó với Toán, chán Toán, sợ Toán, … ngày càng trở nên phổ biến như hiện nay. Công bằng mà nói, tình trạng này không chỉ xẩy ra tại Việt Nam, mà đã từng xẩy ra ở ngay tại một số quốc gia phát triển, khi những quốc gia này áp dụng một phương pháp dạy Toán mà họ tưởng là “mới”. Nhưng lịch sử giáo dục đã chứng minh rằng những phương pháp gọi là “mới” đó thực chất chỉ là sản phẩm của một tham vọng không tưởng – tham vọng tìm kiếm Con Voi Toán Học. Chính vì không tưởng nên nó đã đổ vỡ tan tành! Tại sao một tham vọng đã đổ vỡ mà vẫn còn ảnh hưởng đến nền giáo dục hôm nay? Đó là một ẩn số cần được trả lời, và sẽ được trả lời trong bài kỳ sau: “Con Voi Toán Học & Chiếc Chén Thánh của Chủ Nghĩa Hình Thức”. Phạm Việt Hưng [1] Nghĩa đen là chiếc chén Chúa Jesus dùng trong bữa tiệc ly với các môn đệ, trước ngày Chúa bị hành hình. Nhưng trong nền văn hoá Tây phương hiện đại, thuật ngữ này thường được dùng với ý bóng, ám chỉ một tham vọng rất lớn lao nhưng không dễ gì đạt được, thậm chí chỉ là một giấc mơ không tưởng và con người không bao giờ với tới. [2] Dẫn theo cuốn “Impossibility” của John Barrow. [3] Thí dụ như Reuben Hersh ở Mỹ và Michio Kaku ở Nhật Bản. [4] Indostan là một tên gọi cổ được sử dụng nhiều trong các thế kỷ 17, 18, 19, để gọi một vùng địa lý mà ngày nay ta gọi là Nam Á, bao gồm Ấn Độ, Pakistan, Bangladesh, Sri Lanka, Maldives, Bhutan và Nepal (những quốc gia nói chung có khí hậu nóng và chịu nhiều ảnh hưởng của nền văn minh Ấn Độ). [5] Trích bài của La Thiếu Bình, nhan đề “Ý nghĩa sâu xa của truyện Người Mù Sờ Voi”, Khoa Học & Tổ Quốc tháng 08-2009. [6] Nguyên văn: “Science may set limits to knowledge, but should not set limits to imagination” [7] Xem “Phương trình của Chúa” của Phạm Việt Hưng trên Khoa Học & Tổ Quốc, số 3+4/2005 [8] Nguyên văn: “I don’t believe in Mathematics”. Xem “Impossibility” của John Barrow. Xem đầy đủ bài viết tại wWw.VnMath.Com. Bài viết được đăng tại wWw.VnMath.Com | ||
Posted: 29 Nov 2010 04:04 AM PST Theo kết quả bình chọn của tờ báo danh tiếng TIMES vào cuối thế kỷ trước, thì trong số 20 nhà khoa học được bình chọn vào số những bộ óc vĩ đại có những phát minh nhiều ảnh hưởng nhất trong thế kỷ 20 có hai nhà toán học là Alan Turing và Kurt Gödel. Như ta đã biết, nếu A.Turing được mệnh danh là "người cha của máy tính điện tử", tác giả của "máy Turing", mô hình toán học của các máy tính điện tử hiện đại, mở đầu cho một thời đại bùng nổ của khoa học tính toán và xử lý thông tin, của trí tuệ nhân tạo,..., góp phần làm thay đổi diện mạo của văn minh nhân loại từ giữa thế kỷ 20 đến nay; thì K.Gödel nổi tiếng với các định lý về tính không đầy đủ và không tự chứng minh được tính nhất quán của các hệ toán học hình thức hóa vào đầu thập niên 1930 đã làm xáo động nền tảng của toán học, lật nhào hy vọng của cả một thế hệ toán học về việc xây dựng một nền tảng vững chắc và vĩnh viễn cho toán học, đồng thời cũng mở ra một tư duy mới cho lô gích và toán học, gây ảnh hưởng to lớn đến sự phát triển tư duy triết học và khoa học trong suốt thế kỷ 20. Kurt Gödel sinh ngày 28 tháng 4 năm 1906 tại thành phố Brünn thuộc đế quốc Áo-Hung, ngày nay là Brno thuộc Cộng hoà Séc. Khi đế quốc Áo-Hung tan rã sau Chiến tranh thế giới lần thứ nhất, ở tuổi 12, Gödel trở thành công dân của nước Tiệp Khắc, và sau đó khi ở tuổi 23 ông trở thành công dân Áo. Khi A. Hitler xâm chiếm Áo năm 1938, ông tự động mang quốc tịch Đức ở tuổi 32. Cũng vào năm đó ông lập gia đình với Adele Nimbursky, và rồi để tránh gia nhập quân đội Đức, vào tháng Giêng năm 1940 ông cùng vợ rời Châu Âu đi sang Mỹ theo đường tàu hỏa xuyên Xi-bê-ri (Liên Xô) và Nhật Bản (trước đó ông đã sang Mỹ mấy lần vào các năm 1933-1938). Đến Mỹ lần này, Gödel được nhận một vị trí làm việc tại Viện nghiên cứu tiên tiến (Institute for Advanced Study-IAS) ở Princeton. Ông trở thành một thành viên thường trực của Viện vào năm 1946, và là giáo sư chính thức của Viện từ năm 1953. Tại đây, ông được tặng giải thưởng Einstein đầu tiên vào năm 1951, và Huân chương quốc gia về khoa học năm 1974. Vào những năm cuối đời, tình hình sức khỏe của Gödel không tốt. Ông bị bệnh hoang tưởng, luôn nghi hoặc là có người âm mưu đầu độc mình. Ông không chịu ăn uống gì, ngoại trừ các thức ăn do đích thân vợ ông làm cho. Rồi đến cuối năm 1977, chính vợ ông cũng bị ốm, không còn khả năng chuẩn bị thức ăn cho ông nữa, ông đã từ chối bất kỳ thức ăn gì được đưa đến, và ông đã bị chết đói vào ngày 14 tháng Giêng năm 1978. Cuộc đời khoa học của Kurt Gödel được bắt đầu khá sớm. Từ những năm học trung học ở Brno, quê nhà, Gödel đã tỏ ra có năng khiếu về các môn lịch sử và toán học. Năm 18 tuổi, Gödel theo anh trai của mình sang Viên (Áo) và được nhập học tại trường Đại học Viên, vào thời gian đó ông đã nắm vững các kiến thức về Toán ở trình độ Đại học. Lúc đầu ông có dự định học Vật lý lý thuyết, nhưng vẫn theo đầy đủ các bài giảng về toán học và triết học. Ông đọc Cơ sở siêu hình của khoa học tự nhiên (Metaphysische Anfangsgründe der Naturwissenschaft) của Kant, tham gia vào nhóm thành Viên với các nhà khoa học nổi tiếng như Moritz Schlick, Hans Hahn, Rudolf Carnap... Ông nghiên cứu lý thuyết số, nhưng sau khi tham gia một xêmine của Moritz Schlick nghiên cứu sách của Bertrand Russell về triết học toán học, ông chuyển niềm say mê của mình sang lôgich toán. Một sự kiện có tác động lớn định hướng cuộc đời khoa học của Gödel vào thời gian đó là việc ông dự nghe bài giảng của nhà toán học vĩ đại David Hilbert ở Bologna về tính đầy đủ và tính nhất quán của các hệ thống toán học. Ngay sau đó, vào năm 1930, ông đã hoàn thành luận án tiến sĩ với công trình chứng minh tính đầy đủ của toán lôgich tân từ cấp một1 dưới sự hướng dẫn của Hans Hahn. Và một năm sau, 1931, Gödel công bố công trình chứa các định lý quan trọng và nổi tiếng nhất của đời mình, có nội dung là: đối với các hệ thống toán học hình thức hóa với một hệ tiên đề tính được đủ mạnh để mô tả số học các số tự nhiên, thì: 1. Hệ thống không có thể vừa là nhất quán, vừa là đầy đủ (thường được biết dưới tên gọi "Định lý về tính không đầy đủ"- incompleteness theorem); 2. Tính nhất quán của hệ tiên đề không thể được chứng minh bên trong hệ thống đó. Để tìm hiểu ý nghĩa và tác động của các định lý đó đối với sự phát triển của cơ sở toán học trong thế kỷ 20, ta lược qua vài nét tình hình phát triển đó trong cuối thế kỷ 19 và đầu thế kỷ 20. Ta biết thế kỷ 19 đã là một thế kỷ phát triển khá rực rỡ của toán học, nhưng đồng thời toán học cũng đã lâm sâu vào một thời kỳ "khủng hoảng" về cơ sở: trong khi giải tích toán học và nhiều ngành liên quan đạt được nhiều kết quả phong phú và sâu sắc, thì cơ sở của các ngành toán học lại gần như trống rỗng, thậm chí đối với nhiều khái niệm nền móng như thế nào là số thực, là giới hạn, là liên tục,... cũng chưa có được những định nghĩa thỏa đáng. Vào những năm đó, David Hilbert đã bắt đầu quan tâm đến việc tìm cơ sở cho toán học. Dựa trên công trình Cơ sở của Euclid, ông đã xây dựng, bổ sung và hoàn chỉnh một hệ tiên đề trọn vẹn cho Hình học, và đề xuất việc xây dựng hệ tiên đề cho các lý thuyết toán học. Một yêu cầu cơ bản đối với các hệ tiên đề là tính nhất quán của hệ đó. Để chứng minh tính nhất quán thì có một phương pháp chung là qui dẫn tính nhất quán của một hệ này (S) về tính nhất quán của một hệ khác (S’) bằng cách tìm trong lý thuyết S’ một mô hình cho S (do đó, nếu S’ nhất quán thì S cũng nhất quán), thí dụ tính nhất quán của hệ tiên đề hình học Lobachevski có thể qui dẫn về tính nhất quán của hệ tiên đề hình học Euclid, đến lượt mình, tính nhất quán của hệ này lại có thể qui dẫn về tính nhất quán của số học. Nhưng con đường qui dẫn rồi cũng cần có điểm dừng. Và vì vậy, năm 1900 ở Paris, tại Đại hội Toán học quốc tế lần thứ hai, trong bài phát biểu đề xuất 23 bài toán nổi tiếng cho toán học thế kỷ 20, Hilbert đã đặt bài toán về Sự tương thích của các tiên đề số học, tức cũng là sự nhất quán của hệ tiên đề số học, vào vị trí bài toán số 2. Nhiều năm sau đó, Hilbert đã nghiên cứu, và đến năm 1921 đã đề xuất một cách giải trực tiếp bài toán đó mà không viện đến phương pháp qui dẫn nói trên, đề xuất này về sau được gọi là chương trình Hilbert, bao gồm việc hình thức hoá hệ tiên đề số học, biến việc làm toán trong một hệ tiên đề hóa thành một kỹ thuật chuyển đổi đơn thuần các dãy hữu hạn các ký hiệu hình thức theo một số qui tắc định trước, và chuyển việc nghiên cứu các hệ toán học hình thức hóa vào trong một siêu toán làm việc với các dãy hữu hạn ký hiệu hình thức đó. Để tránh những công kích của trường phái trực giác (intituitionism) đối với cơ sở toán học, Hilbert đề nghị phát triển một siêu toán hoàn toàn nằm trong khuôn khổ của "hữu hạn luận" (finitism), và trong một siêu toán như vậy, tính nhất quán của số học hình thức hóa S được hiểu là “không thể suy diễn từ hệ hình thức S hai công thức A và /A“ (/A là phủ định của A). Như vậy, chương trình Hilbert đã mở ra một con đường để chứng minh tính nhất quán của số học hình thức hóa nói riêng, và của toán học hình thức hóa nói chung, giải quyết một vấn đề rất cơ bản của toán học. Trong thập niên 1920, cùng với Hilbert, nhiều nhà toán học lỗi lạc như Bernays, Ackermann, John von Neumann,... đã thử thực hiện chương trình Hilbert, và có lúc tưởng như đã thành công. Rồi đến năm 1931, Gödel đã làm vỡ mộng của cả một thế hệ toán học khi công bố hai định lý về tính không đầy đủ của mình, vì theo các định lý đó, số học hình thức hóa, nếu nhất quán thì không đầy đủ và không tự chứng minh được tính nhất quán của mình! Các định lý Gödel đã làm thất bại chương trình Hilbert, đưa đến sự vỡ mộng, đồng thời cũng là một sự thức tỉnh: không thể đi tìm tính chân lý của toán học (và của khoa học nói chung) bên trong cấu trúc duy lý của bản thân toán học hay của khoa học đó; cái đúng của toán học phải tìm ngoài toán học; cái cảm giác vỡ mộng và thức tỉnh đó không chỉ đến với các nhà toán học thế hệ Gödel, mà cũng còn đến với bất kỳ ai về sau khi học tập và nghiên cứu về cơ sở toán học. Sau các định lý nổi tiếng đó, Gödel vẫn tiếp tục các nghiên cứu về cơ sở toán học, đặc biệt là trong thời gian làm việc tại Princeton. Năm 1940, ông công bố một công trình có ý nghĩa rất quan trọng đối với lý thuyết Cantor về tập hợp, đó là việc chứng minh tính nhất quán của giả thuyết liên tục và của tiên đề chọn với các tiên đề của lý thuyết tập hợp3, cho lời giải mỹ mãn đối với bài toán số 1 trong số 23 bài toán do Hilbert đề xuất năm 1900. Cùng với thành tựu quan trọng đó, trong những năm còn lại ở Princeton, Gödel tiếp tục dành sự quan tâm của mình cho triết học và vật lý, và cũng đã có một số kết quả xuất sắc. Tất nhiên là ngày nay, khi nói đến cống hiến của Gödel đối với lôgích và toán học nói riêng, đối với khoa học nói chung, người ta thường kể đến các định lý về tính không đầy đủ của toán học hình thức hóa và những tác động trực tiếp của chúng đối với chương trình Hilbert. Các định lý Gödel đã làm lung lay nền tảng duy lý độc tôn trong toán học và khoa học nói chung, và từ đó đã mở đường cho những hướng tư duy mới trong phát triển toán học và khoa học, như các hướng chấp nhận các lôgích đối nhất quán (paraconsistent logíc), các nghịch lý hoặc các "mâu thuẫn đúng" trong các lý thuyết toán học và khoa học, đặc biệt từ những thập niên cuối thế kỷ 20 đến nay. Con đường phát triển khoa học nói chung, toán học nói riêng, đang còn rộng mở. Chúng ta tin tưởng rằng, các công trình đầy chất trí tuệ và giàu khả năng đổi mới tư duy của Kurt Gödel sẽ còn tiếp tục cho ta những cống hiến xuất sắc mới trên con đường phát triển của tương lai. Theo chungta.com |
No comments:
Post a Comment